Температурне поле у пластині з локальним нагріванням

Ключові слова: температурне поле, ізотропна пластина, теплопровідність, теплоізольована поверхня, ідеальний тепловий контакт, локальне нагрівання

Анотація

Розроблено математичні моделі аналізу температурних режимів у ізотропній пластині, яка нагрівається локально зосередженими джерелами тепла. Для цього теплоактивні зони пластини описано з використанням теорії узагальнених функцій. З огляду на це рівняння теплопровідності та крайові умови містять сингулярні праві частини. Для розв'язування крайових задач теплопровідності, що містять ці рівняння та крайові умови на межових поверхнях пластини, використано інтегральне перетворення Фур'є і внаслідок отримано аналітичні розв'язки задач у зображеннях. До цих розв'язків застосовано обернене інтегральне перетворення Фур'є, яке дало змогу отримати остаточні аналітичні розв'язки вихідних задач. Отримані аналітичні розв'язки подано у вигляді невласних збіжних інтегралів. За методом Ньютона (трьох восьмих) отримано числові значення цих інтегралів з певною точністю для заданих значень товщини пластини, просторових координат, питомої потужності джерел тепла, коефіцієнта теплопровідності конструкційного матеріалу пластини та ширини теплоактивної зони. Матеріалом пластини є кремній та германій. Для визначення числових значень температури в наведеній конструкції, а також аналізу теплообмінних процесів у середині пластини, зумовлених нагріванням локально зосередженими джерелами тепла, розроблено обчислювальні програми. Із використанням цих програм наведено графіки, що відображають поведінку кривих, побудованих із використанням числових значень розподілу температури залежно від просторових координат, коефіцієнта теплопровідності, питомої густини теплового потоку. Отримані числові значення температури свідчать про відповідність розроблених математичних моделей аналізу теплообмінних процесів у пластині з локально зосередженими джерелами тепла, реальному фізичному процесу. Програмні засоби також дають змогу аналізувати такого роду середовища, які піддаються локальному нагріванню, щодо їх термостійкості. Як наслідок, стає можливим її підвищити і захистити від перегрівання, яке може спричинити руйнування не тільки окремих елементів, а й усієї конструкції.

Біографії авторів

В. І. Гавриш, Національний університет "Львівська політехніка", м. Львів

д-р техн. наук, професор, кафедра програмного забезпечення

В. Ю. Майхер, Національний університет "Львівська політехніка", м. Львів

канд. техн. наук, ст. викл., кафедра програмного забезпечення

Посилання

Azarenkov, V. I. (2012). Issledovanie i razrabotka teplovoi modeli i metodov analiza temperaturnikh polei konstruktcii radioelektronnoi apparaturi. Technology audit and production reserves, 3/1(5), 39–40. [In Russian].

Carpinteri, A., & Paggi, M. (2008). Thermoelastic mismatch in nonhomogeneous beams. Journal of Engineering Mathematics, 61(2–4), 371–384. https://doi.org/10.1007/s10665-008-9212-8

Dovbnia, K. M., & Dundar, O. D. (2016). Statsionarnyi teploobmin tonkykh polohykh izotropnykh obolonok, yaki znakhodiatsia pid diieiu dzherel tepla, zoseredzhenykh po dvovymirnii oblasti. Visnyk DonNU. Series A: Pryrodnychi nauky, 1–2, 107–112. [In Ukrainian].

Havrysh, V. I., & Fedasjuk, D. V. (2012). Modelling of temperature regimes in piecewise-homogeneous structures. Lviv: Publishing house of Lviv Politechnic National University, 176 p.

Havrysh, V. I., Baranetskiy, Ya. O., & Kolyasa, L. I. (2018). Investigation of temperature modes in thermosensitive non-uniform elements of radioelectronic devices. Radio electronics, computer science, management, 3(46), 7–15. https://doi.org/10.15588/1607-3274-2018-3-1

Havrysh, V. I., Kolyasa, L. I., & Ukhanska, O. M. (2019). Determination of temperature field in thermally sensitive layered medium with inclusions. Naukovyi Visnyk NHU, 1, 94–100. https://doi.org/10.29202/nvngu/2019-1/5

Kikoina, I. K. (1976). Tablitcy fizicheskikh velichin. Spravochnik. Moscow: Atomizdat, 1008 p. [In Russian].

Koliano, Iu. M. (1992). Metody teploprovodnosti i termouprugosti neodnorodnogo tela. Kyiv: Naukova dumka, 280 p. https://doi.org/10.1192/bjp.161.2.280b

Korn, G., & Korn, T. (1977). Spravochnik po matematike dlia nauchnykh rabotnikov i inzhenerov. Moscow: Nauka, 720 p. [In Russian].

Noda, N. (1991). Thermal stresses in materials with temperature-dependent properties. Applied Mechanics Reviews, 44, 383-397. https://doi.org/10.1115/1.3119511

Otao, Y., Tanigawa, O., & Ishimaru, O. (2000). Optimization of material composition of functionality graded plate for thermal stress relaxation using a genetic algorithm. Journal of Thermal Stresses, 23, 257–271. https://doi.org/10.1080/014957300280434

Podstrigach, Ia. S., Lomakin, V. A., & Koliano, Iu. M. (1984). Termouprugost tel neodnorodnoi struktury. Moscow: Nauka, 368 p. [In Russian].

Tanigawa, Y., & Otao, Y. (2002). Transient thermoelastic analysis of functionally graded plate with temperature-dependent material properties taking into account the thermal radiation. Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu, 2, 133–134. https://doi.org/10.1299/jsmemecjo.2002.2.0_133

Tanigawa, Y., Akai, T., & Kawamura, R. (1996). Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties. Journal of Thermal Stresses, 19(1), 77–102. https://doi.org/10.1080/01495739608946161

Yangian, Xu, & Daihui, Tu. (2009). Analysis of steady thermal stress in a ZrO2/FGM/Ti-6Al-4V composite ECBF plate with temperature-dependent material properties by NFEM. 2009-WASE Int. Conf. on Informa. Eng, Vol. 2, 433–436. https://doi.org/10.1109/ICICTA.2009.842

Опубліковано
2021-09-09
Як цитувати
Гавриш, В. І., & Майхер, В. Ю. (2021). Температурне поле у пластині з локальним нагріванням. Науковий вісник НЛТУ України, 31(4), 120-125. https://doi.org/10.36930/40310420
Розділ
Інформаційні технології