АНАЛІЗ НАЯВНИХ МЕТОДІВ І ЗАСОБІВ УДОСКОНАЛЕННЯ НАВІГАЦІЇ БІПЛА З ВИКОРИСТАННЯМ ШТУЧНОГО ІНТЕЛІКУТУ

Проаналізовано літературні джерела, в яких досліджено методи та засоби на підставі нейроморфних для удосконалення навігації БІПЛА. Встановлено, що наявність на базі GPS є особливо вразливою до радіоелектронної боротьби та залежать від ловчих чинників. Охарактеризовано основні методи та засоби навчання і застосування нейроморфних для навігації БІПЛА. Описано загальні питання удосконалення навігації БІПЛА, що дають змогу проводити експерименти та визначати якість тренованої моделі. Визначено використовувані індикатори якості навчання, зокрема: складність навчання, швидкість навчання, агрегатна складність обчислень, кількість необхідних ходів для досягнення поставленої мети. Досліджено основні стратегії навчання з виаградою – DQN, PPO та SAC. Виокремлено основні чинники, що впливають на ефективність процесу навчання: способи та методи навчання, якість даних, наявність середовища. Встановлено, що згідно з результатами попередніх досліджень, ефективними алгоритмами машинного навчання для навігації БІПЛА є методи навчання з підкріпленням, SLAM, 3D-моделювання, візуальна діометрія, Computer Vision та інші. Проаналізовано наявні дослідження, методи та засоби для навчання нейроморфних для удосконалення навігації БІПЛА. Зазначено, що для забезпечення навігації БІПЛА існують заходи, як на рівні збудованого бортового комп'ютера БІПЛА, так і окремі системи для виконання складних обчислень. Встановлено, що ключовим засобом для удосконалення навігації БІПЛА є використання алгоритмів з нечіткою логікою, зокрема потреба розроблення методів і засобів для удосконалення навігації БІПЛА. Обґрунтовано актуальність використання методів на підставі нейроморфних для удосконалення навігації БІПЛА. Визначено напрями майбутніх досліджень, зокрема: визначають ефективні фактори й індикатори для оцінювання результатів навчання; підвищення процесу навчання, удосконалення якості навчальних даних, збільшення ефективності БІПЛА; удосконалення загальної продуктивності; побудова нових моделей навчання; оптимізація наявних алгоритмів; розроблення методів і засобів для удосконалення навігації БІПЛА.

Ключові слова: нейроморфні; глибоке навчання; навчання з виаградою; SLAM; 3D-моделювання; Computer Vision.

Вступ / Introduction

Штучний інтелект уже здійснив революцію у навігації безпilotних, як забезпечуючий апомість польо- тів у наявних сферах, так і створюючи нові. У цьому дослідженні наведено вичерпний аналіз методів і засо- бів для поліпшення навігації дронів за допомогою штуч- ного інтелекту, групуючись на висновках з публікацій у цій галузі. Алгоритми навчання з підкріпленням да- ють змогу дронам навчитися орієнтуватися у способі проб і помилок. Навігація на підставі візуальних даних використовує методи комп’ютерного зрору для сприй- няття та інтерпретації навколишнього середовища за допомогою вбудованих камер. Алгоритми планування шляху отримуватимуть маршрути, щоб уникнути зіткнень і перешкод. Співвідношення "рою" дронів використовує мето- ди навчання з підкріпленням для досягнення цілей гру- пою безпilotників. Алгоритми керування в реальному часі забезпечують точність та стабільність маневрів. Та- кі досягнення в галузі штучного інтелекту для удоско- налення навігації дронів дають безпilotникам змогу орієнтуватися у складних середовищах, уникати пе- решкод і виконувати поставлені завдання з високою ефективністю. Постійний розвиток штучного інтелекту створює сприятливі умови для створення ще більш розумних і продуктивних дронів для різних застосувань у майбутньому.

Об'єкт дослідження – процес навчання нейроморфних для удосконалення навігації БІПЛА. Предмет дослідження – методи і засоби, які дають змогу покращити навігацію БІПЛА методами машинного навчання.

Мета роботи – визначити та проаналізувати фактори, які впливають на якість, швидкість та ефективність навчання нейроморфних, що дає змогу вдосконалити навігацію БІПЛА.

Для досягнення зазначеної мети визначено такі осно- новні завдання дослідження: описати й охарактеризува- ти особливості машинного навчання для удосконалення навігації БІПЛА; визначити та проаналізувати фактори, які впливають на якість, швидкість та ефективність навігації; проаналізувати наявні методи навчання; вивести

Інформація про авторів:
Стасенко Данило Володимирович, аспірант, кафедра систем штучного інтелекту. Email: danylo.stasenko@gmail.com; https://orcid.org/0000-0002-4636-0349
Яківина Віталій Степанович, д-р техн. наук, професор, кафедра систем штучного інтелекту. Email: vitaliy.s.yakovyna@ipnu.ua; https://orcid.org/0000-0003-1333-8591

Цитування за ДСТУ: Стасенко Д. В., Яківина В. С. Аналіз наявних методів і засобів удосконалення навігації БІПЛА з використанням штучного інтелекту. Наукові віснік НЛТУ України, 2023, т. 33, № 4. С. 78–83.

перспективні напрями майбутніх досліджень для вдосконалення навігації БПЛА.
Аналіз останніх досліджень та публікацій. Досліджень [6, 7] описують основні аспекти та систематизують конфігурації апаратного та програмного забезпечення, аеродинамічного моделювання, автоматичної системи керування полетом, а також проблеми при їх інтеграції під час створення безпілотних систем. Одним із ключових аспектів функціонування БПЛА є також забезпечення навігаційної компоненти для застосування в різноманітних галузях. Наприклад, останнім часом шорсткість розвивається військове застосування БПЛА [7, 8], доставка товарів [24], вирощування агрокультур, моніторинг ліній електропередач і т. ін. Навігація БПЛА є актуальною як на відкритому, так і в замкненому просторі [17, 23, 32]. Найчастіше навігація на відкритому просторі забезпечується системою GPS, яка має свої недоліки [1, 2, 27]. Існує низка різних підходів, які можна використовувати для удосконалення роботи БПЛА, коли система GPS недоступна. Моделі на підставі нейроморжеж можуть покращити навігацію БПЛА, дублюючи можливість зміщення місцезнаходження [13]. На етапі навчання таким моделям варто приділяти більше уваги, щоб зменшити імовірність помилки. Рання ідентифікація помилок є ключовим фактором ефективності навчання. Тестування таких систем потребує багато часу та витрат. Через часів та бюджетні обмеження дотично застосовувати як віртуальні, так і реальні навчальні дані. Зважаючи, для удосконалення навігації застосовуються методи одночасної локалізації та картографування (SLAM) [20, 22, 25, 29, 34], а також візуальної [13, 15, 16] та інерційної [13, 15] одометрії. Методи навчання з винагородою стрімко розвиваються впродовж останніх років [4, 11, 18, 29, 30]. Сучасні системи для навчання мають численні функціональні можливості, які взаємодіють одна з одною складними способами, а отже, налаштовуючи генераторів-параметрів для навчання потребує відповідних зусиль. Ідея використання нейроморжеж для навігації БПЛА ґрунтується на здатності нейроморжеж обробляти зображення, класифікувати об’єкти та піддалятишути поведінку під середовище. Цілім моделю для навігації є встановлення власного місцезнаходження, складання карти середовища [29, 25, 22, 20], уникнення препеншок, що оптимально виконувати поставлени завдання. З визнанням штучного інтелекту, зокрема машинного навчання, навігація стала набагато автономнішою, враховуючи різні джерела даних. Отже, моделі на підставі нейроморжеж можуть забезпечити високий рівень автономністі та безпеки застосування БПЛА, що створює сприятливі умови для розвитку різноманітних сфер застосування БПЛА. Дослідження [19] визначає різні рівні автономністі транспортних засобів та створює чітке визначення "автономнісності" при застосуванні БПЛА для виконання конкретних завдань.
Більшість проаналізованих досліджень зосереджено на моделях, які навчаються в віртуальному середовищі. Тому навчальні дані не завжди є високоякісними та потребують додаткової уваги. Однак не завжди можливо отримати реальні дані польотів БПЛА через низку законодавчих обмежень, процес може бути дороговатим і ресурсомістким. Через недоступність відкритих даних, дослідники створюють віртуальні симуляції. Результати дослідження та їх обговорення
Застосування БПЛА. Сьогодні БПЛА значно розширюють форму авіаційної промисловості, а також стають потенційними конкурентами для звичних літаків у військовій та охоронній галузях, для зобов’язання або ліквідації надзвичайних ситуацій, доставки товарів та ін. [7]. Однак внаслідок близькості літального апарату до землі під час виконання завдань з’являються істотні ризики зіткнення БПЛА з різноманітними перешкодами. Також потрібно пам’ятати про законодавчі обмеження стосовно польотів у густонаселених районах, у разі близькості до об’єктів критичної інфраструктури та інш., що можуть становити ризик для навколишнього середовища і промисловості. Тому БПЛА повинні планувати свій маршрут з урахуванням таких зон для їх уникнення та зменшення потенційних ризиків [22].
Отже, для вирішення проблеми виявлення та уникнення переїзду у навігаційних системах БПЛА існують різні стратегії. Найпоширюваніше з них засновано на нечіткій логіці та нейрональних мережах.
Компоненти БПЛА. Звичайно БПЛА мають на своєму борту різноманітне обладнання, таке як камери, сенсори, давачі, гіроскопи і т. ін. Розглянемо детальніше їхні переваги та недоліки.
Камера: це один із найпоширених сенсорів у сфері автономної навігації [1]. Її використовують для отримання зображень навколишнього середовища, які потім можуть оброблятися алгоритмами глибокого навчання для отримання потрібної інформації про середовище з метою проследження маршруту та уникнення препеншок [26]. Проте камери потребують інтенсивного освітлення та можуть вийти з ладу за несприятливих погодних умов, таких як туман або дощ [1]. Також для широкорадіусних камер характерне істотне викривлене зображення (дисторсія), що спотворює навколишнє середовище і може змінити негативну роль в уникнені переїзду або розпізнавання певних об’єктів. Чутливість лінз до білків від дзеркал світла може негативно вплинути на загальну якість зображення з камери або навіть зробити його непридатним для подальшого використання.
LiDAR: використовують для отримання масиву 3D-тучок з навколишнього середовища, щоб створити модель віртуального зображення середовища [17]. Поєднує з візуальними камерами, він здатен працювати для гірших погодних умов, проте такі давачі дороговаті і зважені. Також потрібно обробляти додаткові мастили інформації, що негативно позначається на загальній швидкодії.
Інфрачервоні давачі: їх варто використовувати за умов слабкого освітлення та для розпізнавання людей, тварин або інших об’єктів, що виділяють тепло. Проте вони працюють на відносно невеликих відстанях, дорогоустрійними і не можуть виявити тексту покриття.

Також БІПЛА можуть мати додаткове обладнання (антени) для передачі даних на великі відстані, навігації, проте вони потребують правильної орієнтації у просторі та можуть бути дорогоустрійними.

Оміження БІПЛА. Застосовуючи БІПЛА, потрібно зважати на такі основні характеристики БІПЛА:
1) Обчислювальні ресурси – на бортовому комп’ютері БІПЛА не можна виконувати занадто складні обчислення. Складні алгоритми не завжди ефективно працюють в режимі реального часу.

2) Джерело живлення – від якого більшоюстю залежить час початку (роботи) безпilotника. Також ємність акумулятора є додатковим обмеженням для роботи деяких особливо ресурсоощадних алгоритмів, наприклад оброблення даних на ядрах CUDA.

3) Дорогий ремонт внаслідок аварії: зазвичай БІПЛА оснащені високоточними та дорогоустрійними обладнаннями. Тому внаслідок аварій або іншої критичної ситуації воно може вийти з ладу. Це одна з причин варто розпочати процес навчання у віртуальному середовищі перед реальним практичним застосуванням.

Отже, можна зробити висновок, що потрібно проводити подальші дослідження залежно від названого здусобин критичної відокремлення будь-якої із наведених характеристик.

GPS навігація. У відкритому просторі для навігації БІПЛА зазвичай використовується система глобального позиціонування – GPS [24]. Загалом вона дозволяє отримати точні координати вже в момент відправки з підстави. Також GPS залежить від радіоелектронних перешкод, особливостей рельєфу та погодних умов. У ситуаціях коли з’єднання GPS ненадійне, потрібно використовувати дані з інших давачів, також варто скористатися моделлю на підставі нейроморфних.

Методи навчання нейроморфних. Існують різні алгоритми навчання з винагородою (англ. Reinforcement Learning) [3]. RL – цей тип навчання, а як "агента" взаємодія з "середовищем", оброблюючи "стани" середовища та відповідаючи власною "дією". Залежно від того чи прийняти даної дії до досягнення результату агент може отримати позитивну або негативну "винагороду". Отже, методом проб і помилок модель навчається досягти поставлених цілей. Існують такі найпопулярніші алгоритми навчання RL: DQN, PPO та SAC.

Детальніше проаналізуємо алгоритми навчання нейронних мереж з підкріпленням.

Глобальні Q-мережі (англ. Deep Q-Networks, DQN) [21] є алгоритмом навчання з винагородою (RL), який використовується для навчання агентів в задачах прийняття рішень на підставі дискретних дій. DQN було вперше запропоновано у 2013 р., це стало революцією в сфері RL, створивши можливість навчання агентів за допомогою глобічних нейронних мереж. Основна ідея DQN полягає в поєднанні Q-навчання (Q-learning) з глобічними згортковими нейронними мережами, що дає змогу агентам виробляти оптимальну стратегію дій за допомогою спеціальної Q-функції, яка описує очікувану нагороду агента за виконання дії в певному стані. DQN використовує глобічну згорткову нейронну мережу для наближення Q-функції. Однією з головних інновацій DQN є використання досвіду повторного відтворення (replay experience). Весь досвід агента, а саме послідовність станів, дій та нагород зберігається в спеціальному буфері, і під час навчання випадково вибирається попередній досвід для тренування мережі. Це забезпечує стабільніше та ефективніше навчання, а також дає змогу використовувати складніші стратегії для дій.

Проксимальна оптимізація політики (англ. Proximal Policy Optimization, PPO) є однією з алгоритмів навчання з винагородою (RL) [33]. PPO було розроблено, щоб вирішити проблеми попередніх алгоритмів RL, таких як мінімість навчання та нестабільність. Він забезпечує стабільне та ефективне навчання агентів за допомогою локальних оновлень політики. Основні принципи PPO полягають в тому, що він обмежує максимальні зміни у політиці за кожну ітерацію. Це досягається обчисленням і використанням специфічних функцій, таких як обмежувальне відношення (англ. Clipping Ratio) або обмежувальну функцію втрати (англ. Clipping Loss Function). Це дає змогу зберігати стару політику, щоб уникнути негативних впливів великих оновлень, проте даючі змогу агенту вивчати критичні стратегії. Одна з головних переваг PPO – це його здатність працювати з перервами та дискретними прострасти дій, а також він може бути застосований до дуже широкого спектра задач. PPO став популярним алгоритмом RL завдяки своїх простоті та ефективності. Він дозволяє агентам навчатися швидко та стабільно, забезпечуючи збалансованість як між використанням вже вивченої стратегії, так і для дослідження нових стратегій.

Закінчення.
slaM, 3D-modelovannia (angl. SImultaneous Localization and Mapping) — це технологія для одноразового визначення місцезнаходження, а також побудови карти навколишнього середовища [20]. Вона дає змогу дрону орієнтуватися в просторі, визначати своє розташування в режимі реального часу, а також складати 3D-карти для майбутнього пост-оброблення та застосування у різних галузях [15]. Така технологія стала можливою внаслідок одночасного використання даних з різних джерел: таких як камери, лазерні далекоміри, гіроскоопи та акселерометри. На підставі цих даних алгоритми SLAM аналізують зображення, визірують відстані, визначають орієнтацію та структуру довкілля об'єктів, збігаючись з інформацією для подальшої побудови карти середовища [2]. Чим більше різних джерел — тим вища ефективність локалізації. Проте певним недоліком є потреба в додатковому обробленні та фільтрації зібранних даних.

Технологія 3D-modelovannia використовується завдяки для навігації в закритому середовищі, де GPS недоступний. Проблемою за такого підходу є висока альгортимична складність алгоритмів, особливо у відносинах ско ростання на бортом комп'ютера БПЛА. Частково це можна вирішити, якщо використати легку нейромор фізічну структуру на підставі івана CNN для відображення об'єктів [4]. Також, враховуючи сучасні можливості cloud computing та розвиток 5G [22], можна використовувати весь процес вбачення об'єктів і планування траекторії поза межами бортового комп'ютера БПЛА, зокрема, можна виконувати розрахунки на високопродуктивній наземній станції, тоді як зв'язок із БПЛА здійснюватиметься за допомогою бездротового з'єднання за типом Wi-Fi/5G. Хоча у такий спосіб можна вирішити проблему із навігацією, це має істотні недоліки для безпечного навігації БПЛА у приміщених, де існують набагато вищі шанси зблизитися до того з'єднання. Також не можна забувати, що швидкість передачі даних бездротовими мережами зменшується, що відграє важливу роль при передачі навігаційних команд. З одного боку, складність такого контролю зблизьше потенційні ризики, проте з іншого боку, маневреність дрона відкриває безліч можливостей у середовищі з обмеженим доступом.

Navіgaція та співпраця групи БПЛА (Swarm/più). "Рій" дронів [28] — це ціла група безпілотників із спільною метою та координацією, що створює просто унікальні можливості для їхнього застосування. Використовуючи алгоритми RL, дрони у групі можуть співпрацювати, обмінюючись інформацією та спільно виконувати поставлені завдання. Навігація ріою передбачає децентралізоване прийняття рішень, обмін інформацією за заздалегідь узгодженими каналами зв'язку, а також розподіл завдань між членами групи. Такий підхід дає змогу безпілотникам адаптуватися до динамічних обставин і вивчати стратегії розподіленого зондування [31]. Цей підхід дає змогу групам безпілотників ефективно досліджувати невідоме середовище, складати його карту, а також контролювати більші території та виконувати складні завдання, що було б неможливим для окремого безпілотника. Також стає можливою паралелізація для виконання складних обчислень — тоді кожен член групи може виконувати тільки частину складного завдання, що позитивно впливає на загальну продуктивність.

Обговорення результатів дослідження. Дослідження [27] висвітлює непередбачувані наслідки на підставі GPS, а також проблему підроблення GPS-сигналу та пропонує спосіб боротьби з нею за допомогою зворотної нейроморфність. Дослідження [13] обґрунтовує застосування методу візуальної оцінки для відокремлення навігації БПЛА. Запропонований метод дає змогу створити резервну систему для визначення місцезнаходження. Дослідження [18] порівнює три алгоритми (DQN, RPO та SAC) для виявлення та уникнення перешкод у БПЛА, у якому було проаналізовано переваги та недоліки кожного методу. Результати підтверджують, що середня винагорода зростає з більшою кількістю кроків навчання для всіх алгоритмів, що засвідчує ефективність кожного з них. Однак SAC показує найкращі результати завдяки своїй архітектурі та ефективності вибірки. РРО працює не так добре, що звідси його недостатня ефективність у великим 3D-середовищах. Отже, фаворитами є DQN і SAC. DQN дещо перевершує RPO завдяки кращій ефективності вибірки, проте він не настільки ефективний для планування довгих маршрутів і різних розробок. Отже, використовуючи алгоритми SAC і DQN, навчання з підкріпленням може ефективно навчити безпілотник виявляти та уникати перешкод у різних середовищах. Для навчання збережено сильних обмежень з метою зменшення кількості різних повторів може постачати під загрозу загальну адаптивність, цим самим створюючи негативний ефект від упередження. Проте, в будь-якому разі навчання в низькошвидкіх середовищах дає змогу моделю використати найоптимальніші стратегії для навігації, а також адаптуватися до непередбачуваних ситуацій, цим самим покращуючи загальну ефективність.

Також потрібно врахувати ефективність навчання як у віртуальному, так і реальному середовищах. Хоча віртуальне середовище може зекономити матеріально-технічні та часові витрати, якість даних не завжди є достатньою. А саме від якості даних залежить ефективність тренування моделей для навігації БПЛА [10, 12]. Це одним ефективним способом удосконалення навігації може бути використання кількох дронів, об'єднаних у одну систему. Дослідження [30] засвідчує ефективність цього підходу. Маркер ефективності є відношення часу для досягнення цілей до кількості здійснених кроків. Проте потрібно пам'ятати про баланс — відношення кількості дронів до розміру середовища, ось кілька завдана велика кількість безпілотників в обмеженому просторі зблизьке ризики для аерокосмічних апаратах. Описаний схеми навчання нейроморфних для удосконалення навігації БПЛА можуть бути використані як адаптовані під особливі потреби в майбутніх роботах. Виявлені й описані метрики та фактори ефективності машинного навчання для удосконалення навігації БПЛА потребують подальшого детального вивчення, оскільки важливо вибрати валідні й ефективні індикатори для
оцінювання ефективності навчання, а також визначити ключові фактори, що впливають на процес навчання. Варто зазначити, що більшість робіт і досліджень зосереджені на навчанні у віртуальному середовищі, цим самим не забезпечуючи достатньо якість даних. Наприклад, для удосконалення загальної швидкодії, віртуальне 3D-середовище істотно спрощується, ігноруються по- гонні умови, спрощується симуляція складних фізичних процесів, від яких може істотно залежати поведінка моделі в реальному середовищі. Зокрема, сучасний інструментарій для розроблення 3D-сім’яції, такий як Unity, Unreal Engine, Gazebo, Blender, мають долові обмежені можливості. Для удосконалення методів 3D-моделювання потрібно модифікувати наявні методи та засоби. Також можливим завданням наступних досліджень є удосконалення енергооективності, прищільнення процесу навчання, удосконалення якості навчання, розроблення підходів до навчання із поєднанням усіх можли- вих методів, а також нових алгоритмів для удосконалення навчання БПЛА.

Безумовно, всі зазначені способи мають безліч переваг і істотно покращують навчання БПЛА, проте вони не позбавлені стандартних проблем моделей глибокого навчання — таких як інтерпретація моделей та можливості пояснення результатів, а отже вони досі актуальні. Також сучасні автономні системи повністю мати можли- вість надавати чіткі та зрозумілі обґрунтування своїх рі- шень, особливо в ситуації, де стала аварія або пове- дінка моделі видається непередбачуваною. Існують меха- нізми, такі як "візуалізація моделі", для кращого ро- зуміння її внутрішньої роботи, що допомагає пояснити алгоритми її поведінки.

Отже, за результатами виконаної роботи можна сформулювати таке наукову новизну та практичну зна- чущість результатів дослідження.

Наукова новизна отриманих результатів досліджен- ня — на підставі аналізу моделей методів і засобів навчан- ня нейромереж визначено основні характеристики процесу навчання нейромереж для навчання БПЛА. Також набуло подальшого розвитку питання вирішення проблеми навчання БПЛА у середовищі, де використання GPS є не можливим.

Практична значущість результатів дослідження — описано та виявлено особливості різноманітних підхідів до дослідження процесу глибокого навчання нейр- мереж, а також висвітлення практичних задач майбут- них досліджень. Отримані результати можуть бути використані для удосконалення наявних моделей і мето- дів машинного навчання для удосконалення навчання БПЛА; результати дослідження можна використати в навчальному процесі під час викладання таких дисцип- лін, як: "Машинне навчання" або "Оброблення даних".

Висновки / Conclusions

Отже, на підставі аналізу моделей методів і засобів навчання нейромереж визначено основні характеристи- ки процесу навчання нейромереж для навчання БПЛА.

Зазначено, що основними факторами, які впливають на якість моделей для навчання БПЛА, є: якість вхідних даних, ефективність алгоритмів оброблення даних, ефек- тивність фільтрації даних, актуальність і точність кар- тографічних даних, якість і швидкість фільтрації даних, інтеграція різних систем для зменшення взаємних по- милок, умови навколишнього середовища.

У роботі проаналізовано основні методи машинного навчання для вирішення навігаційних задач, такі як навчання з підкріпленим DNQ, PPO та SAC, а також засобів для віртуальної симуляції навчального середо- вища, таких як Unity, Gazebo, Blender, MATLAB.

Встановлено, що більшість наявних у літературі досліджень використовують методи та засоби з відкритим кодом для побудови навігаційних моделей на базі TensorFlow або PyTorch.

Досліджено найпоширеніші показники оцінювання ефективності моделей на підставі нейромереж для удос-коналення навігації БПЛА. Показано, що для оцінюван- ня ефективності таких моделей найчастіше використо- вують такі параметри, як: точність, кількість помилок, кількість кроків для досягнення цілі.

Ця робота може допомогти дослідникам і практикам визначити адекватні підходи для застосування у відпо- відному контексті та покращити сучасні підходи до нав- ігації БПЛА. Окрім цього, визначено деякі відкриті питання, які потребують додаткових досліджень для удосконалення навігації БПЛА.

References

ANALYSIS OF AVAILABLE METHODS AND MEANS OF IMPROVING UAV NAVIGATION USING ARTIFICIAL INTELLIGENCE

This article presents a comprehensive review and analysis of literature sources investigating methods and tools based on neural networks for improving Unmanned Aerial Vehicle (UAV) navigation. Existing research, methods, and tools for improving UAV navigation are analyzed. Quality indicators for training, such as learning complexity, speed, algorithmic computational complexity, and the number of required steps to achieve the set goal, are examined. The study explores key reinforcement learning strategies, including DQN, PPO, and SAC. Factors influencing the effectiveness of the learning process, such as training methods, data quality, and learning environments, are highlighted. Based on previous research results, effective algorithms for improving UAV navigation are identified, including reinforcement learning, SLAM, 3D modeling, and Computer Vision. The use of fuzzy logic and neural networks is emphasized as a key means of enhancing UAV navigation. The significance of employing neural network-based methods for enhancing UAV navigation is substantiated, and future research directions are outlined. These include identifying effective factors and indicators for assessing learning outcomes, constructing learning models, and developing methods and tools for enhancing UAV navigation. The research focuses on the process of training neural networks to improve UAV navigation, exploring methods and tools that enable machine learning-based advancements. The objectives of the study encompass describing and characterizing the features of machine learning for enhancing UAV navigation, identifying and analyzing factors influencing the quality, speed, and effectiveness of the learning process, reviewing existing training methods, and identifying promising research directions for improving UAV navigation. The scientific novelty of this research lies in analyzing neural network training models and methods to determine the key characteristics of the learning process for UAV navigation. The practical significance of the study results lies in describing and identifying the specifications of various approaches in the investigation of deep neural network learning processes, as well as shedding light on practical challenges for future research.

Keywords: neural networks; deep learning; reinforcement learning; SLAM; 3D modeling; Computer Vision.